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( ABSTRACT—

" With intense relativistic electron beans, such as generated by induction
linear accelerators, pulsed transmission line accelerators or high current RF

{5 lLinacs, collective effects can play an importzat role in the FEL process.

.
£ High gain FELs are said to oparate in the Raran regime when collective effects
i e

Ly dominate the usual ponderomotive effects. Collactive effects may also play aw
- L

t:: important role in low galn FELs when the bea: curreat is sufficlently high.

€. In this paper the linear and nonlinear dynamics of the FEL mechanisms,
S 2emem
e including space charge effects, is analyzed.

the varionous collective and

noncollective operating regimes are d1SCussei.rf
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I. Introduction

Although the first ideas for the free electron laser have been known
since the original article by Motz [l] in 1951 and the successful experiments
by Phillips [2] in 1960, it is the recent work that has made the free electron
laser a serious candidate for a powerful new radlation source. In fact the
free electron laser has become the conceptual alternative for virtually every
radiation source from the microwave to the ultraviolet [3]. This can be
understood by examining Fig. 1, where the power vs. wavelength of high power
coherent radiation sources is plotted. These sources include gas and solid
state lasers, conventional microwave tubes and gyrotrons. The potential
operating range not only covers the entire wavelength range, but maximum power
levels are comparable with the other conventional high power coherent
radiation sources.

Existing accelerator technology together with the characteristics of the
FEL interaction mechanism divide FELs Into distinct categories [4~7], ‘hese
categories are distinguished primarily by the type and characteristics of the
electron beam source.

Free electron lasers based on such beams as RF linacs, microtrons or
storage rings can be expected to operate In what 1Is referred to as the

"Conpton" regime [4-11}., Such beams are generally of high energy, low current

.

and high quality (low emittance). The Compton regime is one In which the _\;::;//

. ""h_-,..
interaction physics is primarily governed by single-particle effects; ‘.
collective or space charge effects can usually be neglected. Typically in F°?___N___

L

IR

this regime the radiation galn is low, thus, practical sources operating In

A
this regime would necessarlily function as oscillators where high gain is not d%

crucial requirement. 1In the absence of efficiency enhancement techniques, the ——

on/f

ity Codes
. ... and/or
Dist Special

oper * ‘nz efficiencies are generally low, (e.g., a fraction of a percent).
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lSince the beam energy and quality Is generally high, FELs in thls regime can
operate in the optical reginme or beyond.

Free electron lasers based on intense relativistic electron beams (IREB)
such as, pulse line accelerators [12-15] or induction linac accelerators [16~-
18), operate in the "Raman" or "collective" regime [4-7,19,20]. Here

collective effects play an Iimportant role in determining such characteristics

as the radiation growth rate, interaction efficiency, etc. The FEL operating

wavelength, however, remains well-approximated by the usual expression
appropriate for the Compton regime. Numerous FEL experiments have been
performed with pulse line generated beams. These beams are produced from
plasma induced field emissfon diodes, and have a relatively flat voltage and
curreat pulse lasting for a few tens of nanoseconds. Typlically they are in
the MeV energy range and carry kiloamperes of current. The low energy and
quality of these beams limit their operation in FELs to the millimeter

regime. Since the beam current is high, the radiation gain (or spatial growth
rate) can be large enough to make operatlion as an FEL amplifler possible.
There ls a third operating regime which has features that are common to

both the Compton and Raman regimes. Here the wiggler field ls strong enough
so that the ponderomotive force on the electrons completely dominates the
space charge forces and the radlatlion growth rate {s large. We will refer to
this regime as the "High-Gain Compton" [4,5]. Free electron lasers using
storage rlng generated electron beams may operate in this regime to produce x—-

rays [21-23].

11 Linear Theory of the Frse Electron laser

The essential feature of the FEL mechanisn is that the electrous undergo

axial bunchlng in the combined wiggler aund radlation flelds. 1In thls section
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‘we will discuss the detalls of the FEL mechanism {n the linear or small sizgnal
regime. The nonlinear dynamics will be discussed in section III,

The physical model consists of a relativistic electron beam of arbitary

P THIEIE

intensity entering and propagating through a static helically polarized

wiggler field. Only spatial variations along the z axis will be considered

B TR

for the electron beam, wiggler field, radiation fields and space charge
waves. Figure 2 shows the basic components of a FEL employing a linearly
polarized wiggler field. In both the linear and nonlinear analysis contained

in this paper a helically polarized wiggler field is used. Using our model we

BUSFIILPT ] I

obtaln expressions for the radiation field, the perturbed charge density and
ponderomotive potential. This set of coupled equations fully describe the FEL
interaction. A dispersion relation, in the high gain regimes, is derived

which shows explicitly the coupling of the electromagnetic and space charge 1

waves by the wiggler field.

For cold electron beams, we find two regimes where the radiation grows
exponentially. In the collective, or Raman regime, the contribution to the
perturbed beam density (and hence radiation output) due Lo the self consistent
space charge potential Is greater than that due to the ponderomotive
potential. In the high gain Compton regime (strong wiggler and/or tenuous
beam Limit) the contributlion to the perturbed beam density from the
ponderomotive wave dominates that due to the self consistent space charge
potential. This reglme can be obtalned by increasing the wiggler amplitude or

reducing the beam density. The Iinteraction In the high gain Compton regime 1is

not a collective one as it Is Iin the Raman regime.

'

e

We also obtain the small signal radiation gain with space charge effects

in the low gain Compton regime. Thls result {s obtalned by taklnz Laplace

PR A

tranforms of the three equations for the ponderomotive potential, denslty
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perturbation and radiation field. The low gain Compton mechanism {s a result
of constructive interference of modes rather than exponentlial growth of an
instability.

The helically polarized, static, perlodic, magnetic wiggler is taken to

have the form
B (2) = B, (cos(sz)ex + sin (sz)ey), (1)

where Bw is constant, kw = 2n/kw, and Aw is the wiggler wavelength. This form
is sufficient for particles near the axis, f.e., kwrb << 1 where 29 i{s the
beam radius. A more realistic representation can be found in Refs, 8 and 9,

The vecltor potentlal associated with this wigzler field is
- ik,.z 2 -ik 2z 2
A, = A (e™Fw? e_+e wf el), (2)

where A, = B /k , and ;* = (;x & 1;y)/2. Electrons streaming axially {n the
presence of the wiggler fleld (2) and radiation field produce a driving
current which can stimulate (amplify) the imposed radiation fleld. The
radiation field, which we will represent by its vector potential éR(z,t),

evolves according to the wave equation

2 2

AN N -
(-5 A=-TI (3)
9z ¢ at

where Ji is the ponderomotive induced transverse driving curreat. In a form
similar to the representation of the wiggler field (2) we represent the

stimulated radlation by

el T, F e
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8(2,t) = ap(el™(%o8)g 4 om18(z, 05 (4)

where AR is the amplitude, #(z,t) = kz-wt {s the phase, k {s the complex
wavenumber and w is the real frequency. The wiggler induced transverse

driving current 1is given by
J,(z,t) = - lel (anw * o !R) + (ronresonant terms), (5)

where 6n 1s the perturbed beam density, Yo is the transverse velocity induced

by the wiggler field, n_ is the ambient bheam deasity and Y is the transverse

0

velocity induced by the radiation field. The transverse wiggle and radiation

velocities are obtalned by the relativistic force equation for the particles,

dp/dt = - |e| (E + (B x B)/Ym c), (6)

where P = ym v, Y = (1 + B_-P/mocz)l/2

= (1 - 3°3/c)-1/2 i1s the total relativ—

istic mass factor. The fields E and B are

- A
E(z,t) = -2 ¢ -1 . (7a)
Bz,t) = &= (e, x (A, + A)), (7b)

where & Is the space charge potentlal assoclated with the perturbed density,

8n, and is given by

= 47|e| bn. (7¢)
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From (6), conservation of canonical transverse momentum, i.e.,

Yo v - |e] éw/c = constant, Ilmplies that

o e 2o (82)

and

lel A . (8b)

XR = Ymoc —R

Substituting (5) together with (8) into (3) yields

2 2
9 1 9 P _ Anle|éna
Sour Ry Sy Sty - S 7 24 )
dz ¢ at Y ¢ Y, M

From Eq. (9), we see that the radlation fleld, éR’ is driven by the wiggler
field, éw’ and the beam dens{ty perturbation, ‘n. The perturbed beam density
must now be determined self consistently. From charge conservation, the

perturbed beam density 1s given by

aén =1 aGJz (10)
t |e| 9z ?

where SJZ Is the perturbed axial beam current given by
= - + .
8J_(z,1) lel (n v, 6nvzo) (11
In Eq. (11), 6v7 and v, are the perturbed aad unperturbed axlial electron

velncities. Combining (10) and (1l1) yields the following expression for the

perturbed denslity,
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Taking the axial component of the force equation, Eq. (6), and using the

relation dy/dt = - |e|(xf§)/moc2 we find that

O ) (19
dt c 2 *

Linearizing (13) by keeping terms to first order in the radiation field yields

dév v
z_ _ _ | l -2 3¢(z,t) 9 zo 9
ac Yo, Tz et Gt 22 3000 ,(2,t) ). (14)

In Eq. (14), the Y;Z relativistic reduction in the space charge field comes

from comblning the terms 23%/3z and -(vzo/c)2 96/3z in Eq. (13) where
(1 - vg/cz)-l/z.

Y, The relativistic factors y and Y, are related by

2J1/2

Y

2
o Yz(l + (|e|Aw/moc )

. The axial force terms due to v x B/¢ and
vzo(x.- _E_:_l)/c2 can be written Iin terms of an effective potential called the
ponderomotive potential, ép’ where

1i((k + k )z=-wt)
= e v + CuCuoe (15)

We see from Eq. (1%4) that the beam velocity and, hence, density 1is driven by
both the ponderomotive and space charge potential waves. The ponderomotive
wave In turn is proportional to the wiggler and radiation field amplitudes.

Taking the convective time derivative of both sides of (12) and employlng (14)

yields
2 -|efn 2, v
d” 8n o 1 &5 <(z,t), 3 3 zo 3
= | 2t = (e = — )0 (z,0) ], (16)
dtz Yomo y 2 az2 dz '3z c2 et P

il A

SN ISP IS | |
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Substituting (7c) into (16) and uslng 32¢/322 = 4n!e:6n we obtain

2 w -|e|n v
a6, 2 =22 @y 22 Be (z,0). an
dt Y, Y, oo ¢ P

Equation (17) shows that the perturbed charge density is driven by the
ponderomotive potentlal wave. Equations (9) and (17) together with (15) form

a set of coupled relations for the radiation field and perturbed charge
density. The beam density perturbation 1s driven by the ponderomotive wave,
which is proportional to the radiation field. The radiation field in turn {is
driven by both the ponderomotive wave and wiggler fleld. The coupling in

these equations, under appropriate conditions, can lead to radiation growth.

FEL Dispersion Relation

The phase of the ponderomotive wave 1s (k + kw)z-mt. From Eq. (17) we see
that the perturbed density should have a similar dependence in the time

asyaptotic limit, hence we write

1((k + kw)z—wt)

Sn(z,t) = Gg(k,w)e + C.C. (18)

Using (18) together with (15,), Eq. (17) becomes

® 2
2 _ P 5%
[(m—vzo(k+kw)) 2J6n |
YoYz i
2 |
w AWAQ vV W
=P FE ok o+k)(k+ k- =22, (19)
2 2 W w c
BWYO m,c |

Equations (9) and (17) can be used in the high galn regime to obtain a

disversion relation for the radiation field. In this sectlon transient terms
P
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associated with the initilal value solution of (9) and (19) will be neglected.
Substituting (18) together with the representations for éw(z) and éR(z,t)

given in (2) and (4), into (9) gives

2

(2 (20)

Eliminating 6n and XR from (19) and (20) ylelds the following dispersion

relation
2 2 2_ 2 2 2 2
o™= e k= /v ) [ le = v, (k#k ))® = wi/y v ]
" 2
b 2
o
where v, T cBw = |e|Aw/(Y°moc) is the magnltude of the electron wiggle

velocity. In obtaining the final dispersion relation in (21) we used the

2
approximations k =~ (1 + By, k. > k_and w = ck to simplify the terms on the
right hand slde of (19), {i.e.,

v W

. _ _ZO o
(k + kw) (k + kw cz ) 2 kkw.

In (21) the first term in brackets represents the uncoupled electromagnetic
aode while the second bracketed term represents the two uncoupled beam space
charge modes having an effective wavenumber k + kw. The wiggler field provides
for the coupling between the electromagnetic and space charge modes. Since we
will be primarily concerned with the forward travelling radlfation field we .can

approximate the electromagnetic mode, in (21) by

B S P S I S S |

DY T W

.
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b I, o e s
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2 2.2 2 2.2 2 172
w-c k “wy /Yo = 2 wlw- (c"k™+ wb/Yo) )R (22)
Using (22) the FEL dispersion relation becomes
@ 2
2,2 2, 2.1/2 _ 2 b
[k = ( w/c mb/Yoc Y ) (ke + k., wlvzo) - _3_____.)
v Y Y
z20 o
2,2
mb/C 2 kw
=Tty N (23)
o B
2o

The dispersion relation in (23) may now be re-cast into the form

2

(k =k Ik =k )k =-k)=-=-a, 24)
wi/c2 2 k
where a” = g° —_- is the coupling coeffizient,
2y w 2
o B8
zo
_ g2 _ 2 1/2
kKom = (¥ o /v ) e, (25a)

{s the electromagnetic mode wavenumber and

k, = (w - vzokw ¥ wb/(Yz/;o)J/Vz

(25b)

o)

is the wavenumber of the positive and negative zn2rgy beam space charge modes

respectively. We can now distlnguish two operz:inz regimes of the FEL
mechanism, often referred to as the high gala noncollective (strong wiggler)

and Raman reglmes.

10

.....
e i P B e B B

e e R A A —— a4 A m

—_——— m L P U DU DN DUPRPHPUE S QIPRORE UL PP SR WL



Hizh Gain Compton Regime

In this regime the forces on the beam electrons due to the ponderomotive
wave dominates that due to the collective space charge effects. This can also
be referred to as the strong wiggler field limit or tenuous beam limit and is

a noncollective process. In this limit the dispersion relation (23) reduces

to

2
(e =k Dl = (w/v, =k )) = - o (26)

where the space charge term whlch comes about from the self consistent scalar
potential, {.e., wb/(vozYz /76) has been neglected. From the character of the
dispersion relation in (26) it is clear that this regime involves the coupling
of an electromagnetic mode with the ponderomotive wave. The maxIimum spatial

growth rate occurs when k is equal to (w - v %k )/v and is given by
em 20 W' zo

/55 Ky 1
7 & -5 ) - (27)
Y c

a2 - L- PR A v

T =

24

JCPENT VL

In obtaining (27) we used the approximations, w = ck and Boz ~ 1, The
dispersion relation in (26) was obtalined by neglecting the space charge term,
this Implies the following inequality between the wiggler field amplitude and 1

beam density

2w 4

~ b ,1/2
B > B U7z 31 (28)
cy k

(o] WYZ

AL the maximum growth rate the frequency of the elactromagnetic wave Is

2 2
A 9 - c o .
w (L4 ’zo) 2 V2o kw 2Yz ck

» where wa have neglected wb//VZ conpared

W

Lo M.
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Raman Regime

The Raman regime Involves a coupling between the forward travelling
electromagnetic mode and the negative energy beam space charge mode. 1In this
regime the beam plasma frequency is sufficiently high that the coupling
between the electromagnetic wave and the two beam waves, {.e., negative and
positive energy modes, can be considered independently. The dispersion
relation describing the interaction between the negative energy beam wave and
electromagnetic wave is obtained from (24). Here, the effect of the positive
energy beam mode on the coupling 1s weak and therefore k - k+ can be replaced
by (k_ = k) = 2wb/(szzo/7:) in (24). The resulting disperslon relation is

a2y Yy v
(k =k, Yk = k) = - —5-2—052, (29)

Zwb

The maximum Raman growth rate occurs when kem =k _ and is

w Y k
r=p (—229l/2 (30)
w
4/Y°c

The coupling wlith the positlve energy beam wave 1s indeed weak, permitting the

replacement of k - k+ by (k_ - k+) if

2w
B, <« (—'/_——"——5)”2 i (31)

¢ YOkWYZ

Note that (31) is the reverse inequality as in the High Gain Compton Regime

given by (28).

Another method of separating the Raman reglme from the high gain Compton

rezime s that

12

L L

- - - .
- . . L ) . - R . - o RS PR RSN .
I S TP T Ty I I W Uy ToUD I Y W U U U SR, A o R U Do, WP R PN R TP SIS g I S, " A




wp > wp,crit =3c B~ v k vy

in the Raman regime, while w ¥ w in the Compton regime.

p,crit

Low Gain Compton Regime

In thls section we will simply state the low galn expression for what 1s
usually referred to as the Compton regime. In this limit the space charge
potential usually plays a small role. It differs from the high gain Compton

regime by the role of the initial conditions. In the previous section we took

Fourier traunsforms to obtaln the FEL dispersion relation in (21). The Raman
» and high gain Compton regimes exist in the long time asymptotic limit and
their characteristics are Iindependent of the initial conditions. To obtaln

the gain in the present regime we take Laplace transforms of Eqs. (9) and

—p—y

(17). The low gain Compton regime gain with space charge effects [24] can be

shown to be given by

gain in (32) reduces to the usual expresslon [4-10,25]. Since the function

[ 2 2
| - -8 w 2 2
¢ o _w _b 39 2 22 sin€ -

G(z) = o o sz 35 (1 + kb z -——5) ( 5 ), (32)

Y ¢ 26
o

P where k, = (w /Y ¢)/(24y )l/2 |G(z)|<< 1, 6 = Akz/2 and Ak =k + k =-w/v .
a b b 'zo o ’ ! W zo
L 2 2
t In the absence of space charge effects, {i.e., kb z << 1, the small signal
P’
{

2
3(sinB/06) /36 has a minimum value of 0,54 when 9 = 1.3, the maximum galn 1is

iven b
”. gaiven Dy
\ - sz: "’i 3
3 G(Z)max =3 w 2 (33)
i )
q
- where z = 2.,6/4k = 2,6/(k + kw - w/vzo).
g
9
-
4 13
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Intrinsic Laser Efficiency and Beam Thermal Limitations

Estimates of the laser efficiency for monoenergetic injected electron
beans can be obtained using simple trapping arguments [5,26]. 1In the FEL
mechanism electron trapping In the longitudinal wave, i.e., ponderomotive and
space charge wave, Is the saturation mechanlism when the injected electron beam

is monoenergetic in the longitudinal direction. The axial phase velocity of

the longitudinal wave is

vph = w/(Re(k) + kw), (34)
where Re(k) is determined from the dispersion relation. 1In the linear
= d=velopment of the laser radiation the Injected axial beam velocity is

slightly greater than the phase velocity, Voo = vph + Av where

consideration. Since radlation growth occurs when Av > 0, the phase velocity

EP Vph >> &v > 0 and Av depends upon the particular FEL regime under

4 .

A of the longitudinal wave must be slightly less than the initial axial electron
éé, velocity. The radiation amplitude increases at the expense of the electron’s
¥ kinetic energy until the electrons become deeply trapped in the longitudinal

: wave, At this point the radiation fleld reaches its maximum amplitude and the
E._ average axial electron velocity 1s approximately given by v, = Vph - Av.
[i; AL saturation the average axlal electron velocity has decreazzg by
apoproximately 2Av. The decrease Iin the electron beam energy can be directly
Py ecuated to the increase 1In radiation energy. For highly relativistic electron
| h2ans the decrease In the average electron kinetlc energy 1ls Ac = 2y YZ m v Av

0 20 0 ZO

3
}
¢ and hence the radiation efflclency is
3

2
n= 2 » 2Yzo Av/c. (35)

o 14
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The longitudinal waves ''see" the beam as -onoenergetic if the beam”s

axial veloclty spread 1s small compared to Av. Since the fractional beam’s

2 !
axlal energy spread 1s Eth/Eo Yzo vth/c. the monoenergetic beam
approximation requires that
E
= << n. (36)

To obtain the intrinsic efficiency, n, at the maximum growth rate, in the high

gain Compton regime we solve (26) for Re(k). We find

biw j2/3 kw
24/3 ¢

Re(k) = m/voz - kw + { 37

/;OCkW

Using (37) to solve for Av = v -

20 vph’ Eq. (35) yields the following

expression for the intrinsic efficiency in the high gain Compton regime

B 2/3
n= {_i‘;w_) . (38)
4/?ockw

Following the same procedure, the intrinsic efficiency in the Raman regime is

Yy ck ’
z w
and in the low gain Compton regime is given by
n = kw/(ZL) (40)

where L is the IntLeraction length., Table I lists the various expresslons for

the spatial growth rates, or gain and the corresponding Intrinsic power

DY IR

st Aefmndint.




efficiencies for the various FEL operating regimes discussed. Operating t

FEL at shorter wavelengths by increasing the heam energy or decreasling the
wiggler period results in lower efficiencies and more stringent requirements
on the beam energy spread. One can attempt to compensate for this by
{ncreasing the beam density, however this 1s usually associated with an

increase in beam temperature.

III. Nonlinear Theory of the Free Electron Laser

In this section the physical model 1is ildentical to the one used for the
linear treatment of the FEL, except here the wiggler field is spatlally
tapered [26-28]). Here agaln only spatial varlations along the z axis will be
considered for the electron beam, wiggler, radiation and space charge fields.

The variable amplitude and period wiggler magnetic fleld can be expressed

in terms of the vector potential

z - z -
A(z) = Aw(z){cos[i kw(z’)dz’]ex + sinfi kw(z’)dz‘]ey

by (41)

where the amplitude Aw(z) and waveanumber k (z) are known and slowly varying
functions of z. The potent{al ffeld in (41) is a good approximation to a
right-handed polarlzed helical magnetic field near the z-axis, i.e., when

kwrb << 1, where ry, Ls the beam radius. The wiggler magnetic field assoclated

with (41) Is glven by

z - z -
‘Ew(z) = Bw(z){cos[j kw(z‘)dz‘ + a(z))ex + sinf] kw(z‘)dz’ + a(z))e

b, (42)
[o] o] y

2]1/2

where B (z) = - ((kw(z)Aw(z))Z + [aAw(z)/az) , and a{z) =

- Lan—l[(BAw(z)/Bz)/(kw(z)Aw(z))), are slowly varying functions of z. The
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period of the magnetic field s Aw(z) = Zn/(kw(z) + da/az) = 2n/kw(z).
The scattered electromagnetic and electrostatic fields in terms of the vector

potential éR(z,t) and scalar potentilal ®(z,t) are taken to be

éR(z,t) = AR(z) [cos ¢(z,t) ;x - sin ¢(z,t) ;y}, (43a)

®(z,t) = 01(z)cos¢p(z,t) + ¢2(z)sin¢p(z,t), (43b)

where ¢(z,t) = 7 k(z“)dz” - ot + 8, ¢p(z,t) = T [k(z") + kw(z‘)\dz’ -~ wt
are the phases gnd the amplitudes of the potent?als, AR(z), ¢1(z) and 02(2)
and the wavenumbers k(z) and %,(z) are slowly varying functions of z. The
scattered electromagnetic field represented by Eq. (43a) 1s a right-handed
elliptically polarized field traveling in the positive z direction. The

frequency w of the field and the phases as well as 8 are Iindependent of z.

Wava Equations

The evolution of the scattered potentials are governed by the wave

equations
:
N 4 ]
(25 - 45 gz = - T 12,0, (44a) i
9z ¢ ot ;
and |
2 P
2L - sng (2,0, (44b) a

where J(z,t) is the driving current density. Substituting the potentials in

Eqs. (43) into (44) ylelds ‘

17




S SP M aru- SR A e Sl b ae g S pi i st e aea pei a e aniE pi et gt el

(mZ/c2 - kz(z)) Ap(2) cosé(z,t)

_Zkl/Z(z) _g_z_ {A.R(Z)kl/z(Z)J sin¢(2,t) = - 2—.” Jx(z’t), (453)
%;(Ql(z)sin¢p(z,t) - @2(z)cos¢p(z,t)J = %1 JZ(Z,t), (45b)

where terms proportional to BZAR/Bz2 have been neglected. The coefflicients of

the siuusoldal terms on the left-hand side of Egqs. (45) are slowly varying
functions of z and independent of t, The arguments of the sinusoidal terms on
the other hand are rapidly varying function of t for z fixed. The rapidly

time-varying terms, in for example Eq. (45a), can be removed by multiplyling

them by :2§¢(z,t) and taking the temporal average over one wave period,
27/ w

t.e., (w/27m) | dt. Performing this operation on Eq. (45a) as well as
o

similar operations on Eqs. (45b) yields

2n/w
(w?/c? - K%(2)) Aq(z) = ;ég ]O J (z,t) cosd(z,t)de, (46a)
1/2, . 3 1/2 ho 2T/0
2 TN2) 5 W2 (2] = 22 g (2,t) sine(z,t)de, (46b)
)
aéz(z) 27 /w
(k(z) + kw(z))él(z) -y " 4 i Jz(z,t) cos¢p(z,t)dt, (46¢)
3¢1(z) 21 /w
(k(z) + kw(z)Jéz(z) t—— = 4 i Jz(z,t) sin@p(z,t)dt. (46d)

Nonlinear Driving Currents

It {s now necessary to obtaln expresslons for the transverse and axifal

components of tLhe current densities and perform the time integration speclfied

18
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in Eqs. (46). In general the non-thermal electron distribution function,

written in terms of the electron orbits, 1is

f(z,p,t) = n v ] 8z - E(to,t)]G(px - Sx(to,t))
8lpy = py(t,,t)) 8lp, = p, (e s0))de (47)

where n, is the uniform particle density to the left of the Iinteraction

region, i.e., z < 0, Voo is the constant axial electron velocity for

z <0, ;(to,t) is the axial position of the particle at time t which crossed
the z = 0 plane at time t, and Eﬁto,t) is the momentum vector of the particle
at time t which crossed the z = 0 plane at time t . Thermal effects which are
characteristic of actual electron beams can be easily included by approprlately
modifying the electron distribution function in (47). The integral over to

in Eq. (47) takes into account the continuous flow of particles into the

interaction region. The current density associated with thls electron

distribution Is

~leln v © p (to,t)a{t - Tt 2]

Az,t) = ——) . d_, (48)
0 ~o Y[R(to,t))laz(to,t)/3t|
where Y(p) = (1 + |g?l/m§c2)1/2 and
z dz”
T(Lo,z) =Lt i ;;zz;:;:; , (49)

is the time it takes a particle to reach the position z {f it entered the
interaction reglion, z = 0, at time t, and vz(to,z) {s the axlal velocity of a

particle at position z which was at z = 0 at time tg,.
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The quantity az(to,t)/EL is the axial velscity v, of a particle at time t
which was at z = 0 at time t . /S}early, for J(z,t) to be finite, v, should
not vanish in the lnteraction/fégion. We assume here that no particle is
slowed down to zero velocity in the laboratory frame, hence

Y(gﬂto.t)Jmolaz(Fp)tafatl = Pz(to,t) and the driving current becomes

= p(t ,t)
J(z,t) = - |e|n v 9

oV z0 _,W §(t - T(to,z)]dto. (50)

Substituting the above form for J(z,t) into the right-hand side of Eqs. (46),
we obtain the self-conslstent amplitudes and phases of the scattered
potentials in terms of driving currents.

Since the system of particles and flelds are In the temporal steady-
state, particles which cross the z = 0 plane separated in time by 2n/w will
execute identical orblts which are separated in time by 2n/w. It is,
therefore, possible to define a beamn segment, "Seamlet", for which all
possible steady-state orblits of the actual beanm particles are represented by
the particles I{n the beamlet, but are displaced ia time. The axial length of

the beamlet is clearly vazo/w. Therefore, substitutlng (50) into (46) yields

{wz ¢? - kZ(Z)JAR(Z)

2n/w Ey[to,t(to,z)]

= 4]e|n —%2 w J cosd{z,t(t_,z)1dt_, (51a)
°© ¢ 5 p.ft ,1(t_,2)) © °
z o o’
2! 2(2) &= (ag (22t 2(2) )
v 2n/w p [t ,T(t ,2) ]
= - a]elno én w ) ~x 2 2 sinf’z,r(to,z)ldto, (51b)
o pz(to’T(to‘Z)]
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8¢2(z) 2n/w

ix(z) + kw(z)Jél(z) - == - 4|e|novzo £ cos¢p(z,r(Lo,z)]dto, (51c)

3¢1(z) 2n /w
{k(z) + kw(z))¢2(z) t——= - 4|e|n°v Jo sin¢p(z,1(t°,z)]dto. (51d)

z0

Notica that on the right-hand side of the above equations the slngle integrals
over t, are from 0 to 2n/w. As we will illustrate, these integrals can be
evaluated numerically by following the orbits of a relatively small number of
particles which enter the interaction reglon in any slngle time Iinterval of

duration 27/w.

Particle Dynamics

We now express the particle orbits, which are needed for the evaluation
of Egs. (51) In terms of the new ladependent variables t, and z. The forces
exerted on the electrons arise from the wiggle and potentials given in Fgs.
(41) and (43). Ve immediately note that the transverse canonical momenta of
the particles Is conserved. Therefore, if both the wiggler and scattered

ields are zero as z * -®, the transverse particle momenta are given by

px(z,t) = lfl-[éw(z) + éR(z,t)J Tes (52a)
and
P (2,L) = J%L (a(2) + a(z,0)) - ;y. (52b)

Uslng Eqs. (52) the longitudinal component of the force equation can be put

intns Lhe form
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dpz(z,L) -lelz

ZY(z,t)moc

- 2¥(z,t) To 37 ¥(z,0)], (53)

where pz(z,t) is the axial momentum and the relativistic mass factor is

2
2 p_(z,t)
vz, = 1+ LBl a2y ¢ ape,0)? e 22002 (54)
moc m C

Equations (52) through (54) specify the particle dynamics in terms of the
wiggler and scattered fields. The transverse aand longitudinal particle motion

is decoupled. Writing Egs. (52) and (53) in terms of the new independent

variables z and ty, we find that

P (z,7) = -l—:—l (wa(Z) + .t&x(Z.T)A), (55a)
_lel
Py(z,T) = (Awy(z) + ARy(z,r)), (55b)
2
de(Z,T) le!z

m c
iz { §z |4 (2) +A.R(2,T)|2' 2Y<z,r)—|—-r§ —;z®(z,r)]. (55¢)

2
2c pz(z,r)

We have expressed the particle orblits In terms of the entry time ts and axial
position z. Note that our definitlon of the momenta implies that,

px(to,T) = px(z,r), py(Lo,T) = py(z,t), and pz(to,f) = pz(z,r). To obtain the
final set of equations for the amplitude AR(z) and wavenumber k(z) we first
combine Eqs. (51a) and (51b) with Egs. (51l¢c) and (531d) respectively. Using

the cxzpressions for Sx and 5y given by Eqs. (55a,b) we arrive at the following

expressionns
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(w?/e? - 2(2) Jag(2) = ;% nov, 2 izm B, e Tl )]
{Aw(z)cos(¢p(z,r(to,z)) + A(2)} de . (563)
2 27 [w
2!/ 2(2) a2k 2(2)) - - 2—‘2—2- "Veo 5 ERCRRICIIY
{Aw(z)sin(q;p(z,r(to,z)J}dto, (56b)

where we have used Eqs. (41) and (43a) for Aw(z) and AR(z,t) and

, 2 1/2 .
w, = (4re| no/mo) . For completeness we rewrite Eqs. (5lc¢) and (51d) for

the scalar space charge potential

BQZ(Z)
(k(z) + kw(z))¢1(z) - —

2 2
wb Voo B 2n/w

= cz ~ lzl i cos(¢p(z,r(to,z)]dto, (57a)
3¢l(z)
(k(z) + kw(Z)J¢2(Z) ¥
-wz v m c2 2n/w
- _p_2 o ] sin{d {z,t(t_,z)ldt 7
7 5 Tel Byl mmleg ) tate 7w

(o4 o

The relevant particle dynamics is contained in Eq. (55b) which is

rewritten in the form

~ 2
dp (¢ ,1) -la 2 m c
—z ool " . cle 57 (8,02 + 52,007 = 2v(em) 2 BT (5
C pz(tor)
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wvhore

2
2
Y(z,1) = |1 + i%{zléw(z) + AR(z,T)I +

z Y(Z‘,T(CO,Z‘))
T(Lo,z) =t + ] = dz”,
o p,(t ,t(t ,27)]

a(2) + ALz, 0|7 = al(2) + Ak(2)

+ 2Aw(z)A(z)cos(¢p(z,T(to,Z)))o

(59a)

(59b)

(59¢)

T T W e T

The nonlinear formulation of the FEL is fully described by Eqs. (56), through

(58). The ponderomotive potential plays a central role in axially bunching

the electron. From Eq. (58) we see that this potantial is given by

(z,1) = ,:jfiL_

) A (z)A,(2) cos{d (z,7(t_,z))!.
poad ¥ mocz w R P o

(60)

The amplitude and phase of the scattered fields as w211 as the axial beam

momentum all vary with a characterist{c axial lengt» w=hich Is much longer than

the wiggler wavelength Aw' This fact allows for Inzxpensive numerical

siaulations to be performed in the laboratory fram= with extremely high energy

electron beams.

Coupled Peadulum and Wave Fquations

Al this polnt our equations can be simplified zsnd wrlitten In a nmore

conventional form. To this end we define the eleciron”s phase, ¥, with

respecL to the ponderomotive potential,

24

B . - . P -
g y I U P il e Aiorcadbimdlh PO
R S Al - -

' s’.;_.k_. s \‘J

ASEAAS. ¢

PP ar—.,




I AN i rSh Y N A R S RN Jsin T A A M TR g et e B et - AR A o

. v Lo et aanly o

z

¥ = - 1 - - > | . 1;2‘ o,

v(v_,2) cj) (k(z*) + ) (27) —wlv (b ,z) izt 4y, (61)
where wo = - moto Is the electron”s phase upon =ntaring the Interaction reglon
at z = 0 and $ is also a function of the initial value 35/32 « The second
derivative of the electron”s phase is 2=0

2~ ~
d \r’(wo)z) d w dvz(\pO’Z)
——— =7 (k_+ k) + .
2 dz W ~ dz
dz v (‘1” ,Z)
VA (o) (62)
Substitutlng (58) into (62) and assuming y >> 1, !Awl >> IARI and
vz = w/(k + kw) ~ ¢ we find the following pendu:l=:a equation [29]
2~ 2 k
d Py _d _ |e wd 2
dz'dz(kw+k) 24 2 dz M
z ¢ Y
2 2
2 k Ym ¢
ble il 3 o 4 P 2 Iy
+ ;%:%—-;5 [AWAR siny - Tel™ (9)siny - vzcosv]], (63)
o 1

]1/2

where Y, = {1+ (le[Aw/moc)z, is the relativistic mass factor associated
with the transverse wlggle motion. 1In the absance of space charge effects,
(63) reduces to the usual pendulum equatlon wi:zh 2 tapered wlggler [23] and
without tapering [10]. Using the same assumpzis~s as used to obtaln the

pendulwn equation we find that

wz cosi(“ 2
(027c? K2 () A (2) = 2 A (2) — (64a)
- "R 2w Y(z,: ) 7

¢ ¢

—wz Sialte z)
/2 d 1/2 b Ty
K (Z) ‘d-; "AR(Z)k / (Z){’ = '2—_2‘ AW(Z) < 7 ’(') ) >’ (6!‘b)
c o
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b o ~ ,
¢l(z) = —;5 TET_ <cos¢(¢o,z)>, (64c)
Zwi moc2 -
= e— !
¢2(z) wz TET— <sinw(vo,z)>, (644d)
2m
where < ¢ ¢ ¢ > = [ (o o )d¢0/2n represents the ensemble average over the
o

initial phases of the electrons., Equations (63) and (64) represent the full
set of nonlinear equations describing the one dimensional FEL process with

space charge effects and tapered wiggler.

Numerical results in the Raman regime

In this sectlon we present numerical results [27]) for the coupled
nonlinear FEL equations in (63) and (64). We assume thal a monoenergetic
electron beam enters the interaction region at z = 0 with a uniform denslty.
The magnetic wiggler field given in (41) Is assumed to be built up

adiabatically from z < 0 to 1ts i{nitial value at =z

[}

0. 1In all of our
numerical simulations a small amplitude radiation fileld is introduced as a
perturbation at z = 0 and allowed to grow spatlally and self-consi{stently
according to the FEL equations,

We first consider the case where the magnetic wiggler parameters are
fixed, 1.e., constant amplitude and period. Later we consider the case where
the wiggler period is adlabatically decreased, resulting in substantially

igher radiation efficiency.

In this example submillimeter radiation at A = 338 um is generated using
a 2,6 MeV electron beam, Table II lists the salient parameters for the
wiggler field electron beam and output radiatlion. The magnetic wiggler
amplitude 2.5 kG and the period is fixed at 2,0 ca. The 2.6 MeV (Yo =6), 5

kA electron beam has a Lransverse equilibrium velocity of vy = 0.078c.
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. Figure 5 shows the amplitude of the vector potential of the excited
.
13i radiation, Ap(2z), and the spatial growth rate, T' = 8(£nAR(z)l/az, as a function
4 of z. These plots are for the frequency w = ZYEZ ckw = 5 x lf)lzsec-1
L
g (y = 338 um). The long spatial region where the growth rate is falrly
[ constant is the linear region of the Ilnteraction. The value of the radiation

frequency in this figure has been chosen to maximize the linear growth rate.
Figure 6 shows the amplitude of the beam space charge wave and the
ponderomotive wave as a function of the iInteraction distance. Both wave
amplitudes are of the same order of magnitude signifying that the process is
for the most part in the Ranan regime. Figure 7 shows the evolution of the
wavenumber associated with the radiation fileld. ince the radiation
wavenumber ls greater than w/c, the effective Index of refraction in the beam
region is greater than unity. This implies that the radiation fleld will tend
to focus inward towards the electron beam. Figure 8 shows a comparison
between the linear growth ratz obtained from the dispersion relation In (24)
(solid curve) with the growth rate obtained from the linear regime of the
fully nonlinear simulations (crosses (x)). Also in this figure the
theoretical efficiency based on Eq. (35) (dashed curve) is compared with the

nonlinear results (circles (o0)).

Efficiency Eahancement

The phase velocity of the total longitudinal wave potential, {.e.,

ponderomotive plus space charge Is approximately Vph = w/(k + kw),

The longltudinal wave potential is responsible for ax{ally bunching and
eventually trapping the electrons. If the wiggler period Is held fixed, the
radiation fleld reaches Iits maximum value when the electrons are trapped in

the longitudlinal potential wells. Just prlor to the saturation of the
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radiatlion field, the eclectrons are somewhat spatially bunched and trapped near
the bottom of the wave potential. The trapped electrons at thls point can be
considered, for our purpose, to form a macro-particle. By appropriately
reduclng the phase velocity as a function of axial distance down the
interaction region, the kinetic energy of this macro-particle can be further
reduced and converted into wave energy. The phase velocity must be reduced in
such a way so that the inertial potential of the trapped macro-particle is
always less than the potential of the growing longitudinal wave. The phase
velocity can be reduced by decreasing the perliod of the magnetic pump as a
function of z. In order for the macro-particle to remaln trapped, the spatial
rate of change of the wiggler period must be sufffclently slow. In principle
virtually all the kinetic energy of the macro-particle can be extracted and
converted to wave energy. However, not all the beam particles comprise the
macro-particle; some are untrapped. Converting particle kinetic energy into
radiation by varylng the wave velocity 1s somewhat analogous to the reverse
process of particle acceleration in say an RF linac. Figure 9 illustrates the
effect on the saturaled radiation amplitude using a tapered wiggler field. 1In
this figure the wiggler period is gradually decreased spatially at the point
whera the electrons are deeply trapped. Once the electrons are deeply trapped
they are decelereated by decreasing the wiggler period [27,28]. Figure 9
demonstrates that dramatic enhancements in the FEL efficlency can be achleved
in this way. (The parameters of Fig. 9 are dlfferent from Tahle I1, and they
are given In Ref. [27].) There are of course other schemes for enhancing
efficliency In the FEL. These include, for example, spatlally decreasing the
wiggler amplitude [26,28] and/or applying an axial accelerating force such as

a D.C. electric field [30,31] to the trapped electrons,

28

PV DT G DO U U U WRDPS L P W

1
R
“4
4
o




F—‘ = o eyt et s S M vt ' Ao e ir Ben e e Sha e Jhta b e A A e A" & "R A RoARI T o el R T S P e
B ———y g .

...........

As a concluding comment, concerning the rapid growth of the free electron
laser concept, the theory has been extended to iInclude axial magnetic flelds
[32,33] thermal effects [34]}, three—-dimenslonal effects [35,36] and the
nonlinear stability of the radiation field [37]. Also a number of FEL

experiments are now underway or in the planning phase and numerous workshops

and special journal issues on the subject have appeared [7,38-42],
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otherwise stated)

ry is the beam radius, Bw

filling factor, i.e., beam area/radiation area.
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Table 1

=v fc, ¥ 2
w 7’ ‘oz

= Yo/(l + v B,

The quantities used in Table I have the following definftions: v = 1/17 is
Budker”s parameter, I is the beam current In kiloanperes, L is the wiggler length,
LE(8) = 3 (sin 6/8)2/26,
8= (1 - voz/vph)tm/z, T = L/voz is the electron”s transit time and F is the

(c.g.s. units are used unless

FEL Operatling Galn or Intrinsic Power
Regimes Growth Rate Efficiency
2/3
High Gain- r B A B
(single-particle) Yo W b o b
Raman 8 A
1/2 1/4 W 1 1/2
(collective, (“YOZF) / (V/Yo) m_=_ peeva (2 /2w
high gain) R Yz Yo Ty
Compton 3 p\
1
(single-particle, TF = (8 )2 L £(6) > —
low-gain) Y w 2>\ 2 L
ow-galn o t A,
b
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-
e
L
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Table II
Raman FEL in the Submillimeter Regime

(Constant Magnetic Wigzler Parameters)

Ly -

Magnetic Wiggler Parameters

Wiggler Wavelength A 2.0 cm

Wiggler Amplitude B 2.5 kG

Electron Beam Parameters

AN SN I ot
L Y W

. Beam Energy E, 2.6 MeV(YO = 6)

Beam Current Iy 5 kA

Axial Gamma Ys0 5.4

Beam Radius ry 0.3 em

Wizgle Velocity Bw 0.078

Self Potential Energy Spread AE/Eo 4,9%

Output Radlation Parameters

r’
i Radiation Wavelength A 338 pm \
3 P
‘ K
o Linear e-folding length#* Le = /T 5.3 cm )
-
S 9
¢ Efficlency* n 9.2% |
r R
- Radiation Power® P 1.2 GW f
l. )
- .
* |
q * AL the maximum growth rate,
. ]
:_ 4
p 3
C 31 |
.
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Figure 2

Figure 3

Figure 4
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Figure Captions
Power vs, Wavelength
The power vs. wavelength of some representative high power
coherent radiation sources are shown., The output from recently
reported free electron laser sources are shown and the type of
electron beam source used indicated. The visible FEL"s utilizing
storage ring electron beams, are at a power level below the scale

of the graph.

Shows a typical FEL configuration employing a linearly polarized

wiggler field

Disperslon diagram of the coupled beam space charge modes and
electromagnetic mode. The Raman FEL instability occurs near the
intersection between the negative energy beam mode and

electromagnetic mode.

Spatial growlh rate and intrinsic efficiency in the Raman and high

gain Compton regimes as a functlon of the wiggle velocity/c.

Shows the evolution of the radiation field amplitude and the

growth rate as a functlon of th2 interactlon distance.

Shows the spatial evolution of the beam space charge wave and

ponderomotive wave amplitude. This illustration is in tha Raman

regime.
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Figure 7 Shows the spatial evolution of the radiation wavenumber, the range I

where k is constant is the linear regime. Since k > w/c the

radiation field will focus inward towards the electron beam.

Figure 8 Shows the comparison between the linear growth rate obtained from
the dispersion relation (solid curve) and that obtained from the
simulations in the linear regime (crosses (x)). Also shown is the
theoretical efficiency based on Eq. (35) (dashed curve) compared

with the nonlinear simulations (circles (o)).

Figure 9 Shows the enhancement of the radiation fleld and efficiency by

tapering the wiggler period.
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